37 research outputs found

    Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts.

    Get PDF
    AIMS: Recently it has been shown that the mitochondria-targeted S-nitrosothiol MitoSNO protects against acute ischaemia/reperfusion (IR) injury by inhibiting the reactivation of mitochondrial complex I in the first minutes of reperfusion of ischaemic tissue, thereby preventing free radical formation that underlies IR injury. However, it remains unclear how this transient inhibition of mitochondrial complex I-mediated free radicals at reperfusion affects the long-term recovery of the heart following IR injury. Here we determined whether the acute protection by MitoSNO at reperfusion prevented the subsequent development of post-myocardial infarction heart failure. METHODS AND RESULTS: Mice were subjected to 30 min left coronary artery occlusion followed by reperfusion and recovery over 28 days. MitoSNO (100 ng/kg) was applied 5 min before the onset of reperfusion followed by 20 min infusion (1 ng/kg/min). Infarct size and cardiac function were measured by magnetic resonance imaging (MRI) 24 h after infarction. MitoSNO-treated mice exhibited reduced infarct size and preserved function. In addition, MitoSNO at reperfusion improved outcome measures 28 days post-IR, including preserved systolic function (63.7 ±1.8% LVEF vs. 53.7 ± 2.1% in controls, P = 0.01) and tissue fibrosis. CONCLUSIONS: MitoSNO action acutely at reperfusion reduces infarct size and protects from post-myocardial infarction heart failure. Therefore, targeted inhibition of mitochondrial complex I in the first minutes of reperfusion by MitoSNO is a rational therapeutic strategy for preventing subsequent heart failure in patients undergoing IR injury

    Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging.

    Get PDF
    AIM: Stimulation of the nitric oxide (NO)--soluble guanylate (sGC)--protein kinase G (PKG) pathway confers protection against acute ischaemia/reperfusion injury, but more chronic effects in reducing post-myocardial infarction (MI) heart failure are less defined. The aim of this study was to not only determine whether the sGC stimulator riociguat reduces infarct size but also whether it protects against the development of post-MI heart failure. METHODS AND RESULTS: Mice were subjected to 30 min ischaemia via ligation of the left main coronary artery to induce MI and either placebo or riociguat (1.2 µmol/l) were given as a bolus 5 min before and 5 min after onset of reperfusion. After 24 hours, both, late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) and (18)F-FDG-positron emission tomography (PET) were performed to determine infarct size. In the riociguat-treated mice, the resulting infarct size was smaller (8.5 ± 2.5% of total LV mass vs. 21.8% ± 1.7%. in controls, p = 0.005) and LV systolic function analysed by MRI was better preserved (60.1% ± 3.4% of preischaemic vs. 44.2% ± 3.1% in controls, p = 0.005). After 28 days, LV systolic function by echocardiography treated group was still better preserved (63.5% ± 3.2% vs. 48.2% ± 2.2% in control, p = 0.004). CONCLUSION: Taken together, mice treated acutely at the onset of reperfusion with the sGC stimulator riociguat have smaller infarct size and better long-term preservation of LV systolic function. These findings suggest that sGC stimulation during reperfusion therapy may be a powerful therapeutic treatment strategy for preventing post-MI heart failure

    Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy.

    Get PDF
    Mitochondrial complex I, the primary entry point for electrons into the mitochondrial respiratory chain, is both critical for aerobic respiration and a major source of reactive oxygen species. In the heart, chronic dysfunction driving cardiomyopathy is frequently associated with decreased complex I activity, from both genetic and environmental causes. To examine the functional relationship between complex I disruption and cardiac dysfunction we used an established mouse model of mild and chronic complex I inhibition through heart-specific Ndufs4 gene ablation. Heart-specific Ndufs4-null mice had a decrease of ∼ 50% in complex I activity within the heart, and developed severe hypertrophic cardiomyopathy as assessed by magnetic resonance imaging. The decrease in complex I activity, and associated cardiac dysfunction, occurred absent an increase in mitochondrial hydrogen peroxide levels in vivo, accumulation of markers of oxidative damage, induction of apoptosis, or tissue fibrosis. Taken together, these results indicate that diminished complex I activity in the heart alone is sufficient to drive hypertrophic cardiomyopathy independently of alterations in levels of mitochondrial hydrogen peroxide or oxidative damage

    Using exomarkers to assess mitochondrial reactive species in vivo

    Get PDF
    Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. Scope of review: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. Major conclusions and general significance: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Abbreviations: EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio

    Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia.

    Get PDF
    Nitrate (NO3-) and nitrite (NO2-) are known to be cardioprotective and to alter energy metabolism in vivo NO3- action results from its conversion to NO2- by salivary bacteria, but the mechanism(s) by which NO2- affects metabolism remains obscure. NO2- may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2--dependent S-nitrosation of proteins thiols in vivo Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2- under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2- in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2- on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2-, combined with the lack of S-nitrosation during anoxia alone or by NO2- during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2- exposure

    A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes

    Get PDF
    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycaemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs following the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal and disruption to mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear due to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycaemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycaemia in both cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Schutz vor Reperfusionsschaden durch Bradykinin und Adenosin nach akutem Myokardinfarkt

    No full text
    Der akute Myokardinfarkt ist die häufigste Todesursache in den Industrieländern. Um die Spätfolge Herzinsuffizienz so gering wie möglich zu halten, ist eine schnelle Wiederherstellung des koronaren Blutflusses entscheidend. Dieser gewünschten Reperfusion wird jedoch eine zusätzliche Schädigung des Myokardgewebes zugeschrieben. Durch kurze Intervalle von Ischämie und Reperfusion nach Wiederöffnung des Koronargefäßes konnte die Infarktgröße drastisch gesenkt werden, so dass dieses als ischämische Postkonditionierung bezeichnete Verfahren, hohes Potential zur Reduktion der Myokardschädigung nach einem Infarkt bietet. Für den klinischen Einsatz erweist sich dieses Verfahrens jedoch als technisch aufwendig, so dass der Wunsch nach pharmakologischen Ansätzen zu Beginn der Reperfusion steigt. Die vorliegende Arbeit befasste sich daher mit der Untersuchung möglicher kardioprotektiver Substanzen und der Charakterisierung wichtiger Elemente der zugrunde liegenden Signalkaskade. Hierfür wurde in dem Modell der ex vivo perfundierten Rattenherzen die kardioprotektive Wirkung des endogenen Mediators Bradykinin während der Reperfusion und die mögliche Beteiligung des EGF-Rezeptors untersucht. In einem kardiomyozytenbasierten Zellmodell, bei dem HL-1-Zellen mit den Kalziumionophor Calcimycin gestresst wurden, sollte die Beteiligung wichtiger Signalelemente bestätigt werden. Zur Charakterisierung der Rolle der Adenosinrezeptoren während der Reperfusion wurde ein in vivo Maus Modell etabliert, welches die Untersuchung der Infarktgröße im Tier erlaubt. Hierfür wurden selektive Adenosinrezeptoragonisten und -antagonisten sowie CD73-/- Mäuse, die kein endogenes Adenosin durch die 5’-Ektonukleotidase (CD73) bilden können, verwendet. In dieser Arbeit konnte gezeigt werden, dass Bradykinin während der Reperfusion zu einer signifikanten Reduktion der Infarktgröße führt und dass dieser Schutzmechanismus von einer Transaktivierung des EGF-Rezeptors und der survival Kinase Akt abhängig ist. Des Weiteren konnte sowohl bei den Infarktgrößen als auch im zellbasierten Modell eine Beteiligung der MMP-8 bei der Transaktivierung des EGF-Rezeptors nachgewiesen werden. Anhand des in vivo Maus Modells konnte gezeigt werden, dass der durch die ischämische Postkonditionierung vermittelte Myokardschutz durch den selektiven A2bAR Antagonisten MRS1754 aufgehoben werden konnte und dass eine Aktivierung des A2bAR durch den selektiven A2bAR Agonisten BAY60-6583 während der Reperfusion zu einer Senkung der Infarktgröße führt. Des Weiteren konnte mit Hilfe der CD73-/- Mäuse und unter Verwendung von selektiven Adenosinrezeptoragonisten und -antagonisten gezeigt werden, dass bei fehlendem extrazellulärem Adenosin kein Schutz durch eine ischämische Postkonditionierung, dem selektiven A2bAR Agonisten BAY60-6583 oder dem A2aAR Agonisten CGS21680 erzielt werden kann, sondern dass nur die gleichzeitige Aktivierung von A2aAR und A2bAR zum Schutz des Herzens vor Reperfusionsschäden führt. Die vorliegenden Ergebnisse zeigen mögliche Ansätze für pharmakologische Interventionen zur Behandlung des akuten Myokardinfarkts auf. Die Verwendung von Agonisten zur Aktivierung von G-Protein gekoppelten Rezeptoren rückt damit immer mehr in den Vordergrund für mögliche klinische Ansatzpunkte.Acute myocardial infarction is a major cause of death in industrialized countries. A rapid restoration of blood flow is very important to minimize the late effect heart failure as much as possible. This reperfusion seems to have potential to induce additional damage of myocardial tissue. Brief periods of ischemia and reperfusion applied at the onset of reperfusion could reduce the infarction. This so called ischemic postconditioning indicates high potential for interventions against myocardial injury, but the extensive technique is not fully useful for clinical use. Therefore pharmacological therapies at the onset of reperfusion are increasingly in the focus. The purpose of the study was to examine possible cardioprotective drugs mimicking the protection afforded by postconditioning and to characterize components of their signalling pathway. In an ex vivo perfused rat heart model the cardioprotective effect of the endogen mediator Bradykinin (BK) given at reperfusion was tested and whether it’s effect is dependent on EGF-receptor (EGFR) activation. Furthermore, a cell model mirroring the detrimental calcium increase happening at reperfusion was used to confirm important steps in the signalling. Finally, the role of adenosine receptors (AR) during reperfusion was addressed. An in situ mouse model of infarct size was established. Highly selective AR agonists and antagonists, as well as genetically-altered mice lacking CD73, which are incapable to produce a large amount of adenosine during ischemia, were used. It could be shown that BK given at reperfusion significantly reduces infarct size in isolated rat hearts and this protection depends on EGFRs and the survival kinase Akt. Moreover, BK also protects in a cell model of calcium-induced mPTP formation. In both models, BK’s protection was susceptible to metalloproteinase (MMP)-8 inhibition, suggesting that BK signals its protective effect through an MMP-8-dependent transactivation of the EGFR in the rat heart. In the second part using the in situ mouse model, the infarct size reducing effect of both ischemic postconditioning and the highly-selective A2bAR agonist BAY60-6583 could be demonstrated. The infarct reducing effect of ischemic postconditioning was abolished by the selective A2bAR antagonist MRS1754, suggesting a role for A2bAR in the signalling. Furthermore, mice lacking CD73 were used. Infarct size in untreated control animals was similar to that in wild type mice, but ischemic postconditioning, the selective A2bAR agonist BAY60-6583 and A2aAR agonist CGS21680 could not reduce infarct size in these animals, while the simultaneously activation of both, A2bAR and A2aAR, lead to a strong cardioprotection against reperfusion injury. Taken together, the results of the present study show important pharmacological properties of BK and AR antagonists, rendering them as strong candidates for the clinical use against reperfusion injury in patients with an acute myocardial infarction
    corecore